Mixed-Mode GPS Network Processing for Deformation Monitoring Applications in the Equatorial Region

نویسندگان

  • Volker JANSSEN
  • Chris RIZOS
چکیده

The Global Positioning System (GPS) can be utilised in a wide range of deformation monitoring applications. During the past few years a methodology has been developed for processing data collected by GPS networks consisting of a mixed set of single-frequency and dual-frequency receivers. The strategy is to deploy a few permanent, ‘fiducial’ GPS stations with dual-frequency, geodetic-grade receivers surrounding an ‘inner’ network of low-cost, single-frequency GPS receivers. Such a configuration offers considerable flexibility and cost savings for deformation monitoring applications, which require a dense spatial coverage of GPS stations, and where it is not possible, nor appropriate, to establish permanent GPS networks using dual-frequency instrumentation. The basis of the processing methodology is to separate the dual-frequency, ‘fiducial’ station data processing from the baseline processing involving the inner (single-frequency) receivers located in the deformation zone. The dual-frequency GPS network is used to generate a file of ‘corrections’, analogous to Wide Area DGPS correction models for the distance dependent biases. These ‘corrections’ are then applied to the double-differenced phase observations from the inner receivers to improve the baseline accuracies (primarily through empirical modelling of the residual atmospheric biases that otherwise would be neglected). The performance of this configuration under severe ionospheric conditions in the equatorial region has been investigated by simulating such a two-stage network using data collected in the Hong Kong GPS Active Network. A description of the processing strategy, together with a discussion of the results, is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mixed-mode Gps Network Processing Approach for Deformation Monitoring Applications

The Global Positioning System (GPS) can be utilised in a wide range of deformation monitoring applications, such as the monitoring of active volcanoes, tectonic fault lines, landslides, ground subsidence, bridges, dams, high-rise buildings, etc. During the past few years a methodology has been developed for processing data collected by GPS networks consisting of a mixed set of single-frequency ...

متن کامل

Processing Mixed-Mode GPS Networks for Deformation Monitoring Applications

The Global Positioning System (GPS) can be utilised in a wide range of deformation monitoring applications. During the past few years a methodology has been developed for processing data collected by GPS networks consisting of a mixed set of single-frequency and dual-frequency receivers. The strategy is to deploy a few permanent GPS stations with dual-frequency, geodetic-grade receivers surroun...

متن کامل

A Mixed-Mode GPS Network Processing Approach for Volcano Deformation Monitoring

350 words maximum: Ground deformation due to volcanic magma intrusion is recognised as an important precursor of eruptive activity at a volcano. The Global Positioning System (GPS) is ideally suited for this application by being able to measure threedimensional coordinate changes of the monitoring points over time. Due to the highly disturbed ionosphere in equatorial regions, particularly durin...

متن کامل

Experiences with a Mixed-Mode GPS-Based Volcano Monitoring System at Mt. Papandayan, Indonesia

During the past few years a methodology has been developed for processing data collected by GPS networks consisting of a mixed set of single-frequency and dual-frequency receivers. The strategy is to deploy a few permanent, ‘fiducial’ GPS stations with dual-frequency, geodetic-grade receivers surrounding an ‘inner’ network of low-cost, single-frequency GPS receivers. Such a configuration offers...

متن کامل

Low-Cost GPS-Based Volcano Deformation Monitoring at Mt. Papandayan, Indonesia

The Global Positioning System (GPS) can be utilised to detect ground deformations of the surface of a volcano. Ground deformation monitoring is considered one of the most effective tools for investigating the behaviour of active volcanoes. The decreasing cost of GPS hardware, together with the increased reliability of the technology, facilitates such demanding applications. GPS ground deformati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002